Filtrer
Éditeurs
Prix
Birkhäuser
-
This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications.The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.
-
Infinite Dimensional Algebras and Quantum Integrable Systems
Nenad Manojlovic, Henning Samtleben
- Birkhäuser
- 17 Janvier 2006
- 9783764373412
This volume presents the invited lectures of the workshop "Infinite Dimensional Algebras and Quantum Integrable Systems" held in July 2003 at the University of Algarve, Faro, Portugal, as a satellite workshop of the XIV International Congress on Mathematical Physics. In it, recent developments in the theory of infinite dimensional algebras, and their applications to quantum integrable systems, are reviewed by leading experts in the field.
-
Cancer: Cell Structures, Carcinogens and Genomic Instability
Leon P. Bignold
- Birkhäuser
- 27 Janvier 2006
- 9783764373788
This volume began with an invitation from the publishers to edit a volume of EXS on Cancer. This invitation undoubtedly derived from my articles in Cellular and Molecular Life Sciences in 2002 and 2003 on the relationships between the morphology, aetiology and pathogenesis of tumours, especially in relation to genetic instability. After many years of teaching the theories of c- cer in undergraduate medical school courses, it seemed to me that the variably chaotic histopathologic features of tumours parallel in some way, the variably unstable genomes of tumour cells, which were being discovered in the 1990s. Thus the title of the volume has come to include morphology, carcinogenesis and genetic instability. The invitation came while I was working with Herrn Dr. med. Hubertus Jersmann (MD Düsseldorf, PhD, now Senior Lecturer in Medicine of the University of Adelaide) and Professor Brian Coghlan (Emeritus Professor of German, the University of Adelaide), on the work of the nineteenth century cancer pathologists, especially David Paul von Hansemann (1858-1920). With the delivery of the manuscripts from the authors of the chapters, it became obvious that a background chapter for the volume could include some of the material which we had "uncovered" together. Because of this, chapter 1 is authored by the three of us, and the "new" material figures prominently.
-
Published in honor of his 70th birthday, this volume explores and celebrates the work of G.W. (Pete) Stewart, a world-renowned expert in computational linear algebra. It is widely accepted that Stewart is the successor to James Wilkinson, the first giant in the field, taking up the perturbation theory research that Wilkinson so ably began and using it as a foundation for algorithmic insights.
Stewart's results in many areas of computational linear algebra broke new ground and are still widely used in an increasing number of applications. Stewart's papers, widely cited, are characterized by elegance in theorems and algorithms and clear, concise, and beautiful exposition. His six popular textbooks are excellent sources of knowledge and history. Stewart is a member of the National Academy of Engineering and has received numerous additional honors, including the Bauer Prize.
This volume includes: forty-four of Stewart's most influential research papers in two subject areas: matrix algorithms, and rounding and perturbation theory; a biography of Stewart; a complete list of his publications, students, and honors; selected photographs; and commentaries on his works in collaboration with leading experts in the field.
G.W. Stewart: Selected Works with Commentaries will appeal to graduate students, practitioners, and researchers in computational linear algebra and the history of mathematics. -
Spectral Theory on the S-Spectrum for Quaternionic Operators
Fabrizio Colombo, Jonathan Gantner
- Birkhäuser
- 4 Janvier 2019
- 9783030030742
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
-
New Trends in Parameter Identification for Mathematical Models
Bernd Hofmann, Antonio Leitao
- Birkhäuser
- 13 Février 2018
- 9783319708249
The Proceedings volume contains 16 contributions to the IMPA conference "New Trends in Parameter Identification for Mathematical Models", Rio de Janeiro, Oct 30 - Nov 3, 2017, integrating the "Chemnitz Symposium on Inverse Problems on Tour". This conference is part of the "Thematic Program on Parameter Identification in Mathematical Models" organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.
-
Fluid-Structure Interaction and Biomedical Applications
Tomas Bodnar, Sarka Necasova
- Birkhäuser
- 13 Octobre 2014
- 9783034808224
This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holistic view of the latest findings on the subject, and of the relevant open questions. For the same reason we expect the book to become a trusted companion for researchers from diverse disciplines, such as mathematics, physics, mathematical biology, bioengineering and medicine.
-
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include:Oceanic and atmospheric dynamicsIncompressible flowsViscous compressible flowsWell-posedness of the Navier-Stokes equationsWeak solutions to the Navier-Stokes equationsFluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
-
This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material.
The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problemswill encourage readers to apply the material to future research.
Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing.
See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html -
This volume presents state-of-the-art developments in theoretical and applied fluid mechanics. Chapters are based on lectures given at a workshop in the summer school Fluids under Control, held in Prague on August 25, 2021. Readers will find a thorough analysis of current research topics, presented by leading experts in their respective fields. Specific topics covered include: Magnetohydrodynamic systemsThe steady Navier-Stokes-Fourier systemBoussinesq equationsFluid-structure-acoustic interactions Fluids under Control will be a valuable resource for students interested in mathematical fluid mechanics.
-
This volume offers an overview of the area of waves in fluids and the role they play in the mathematical analysis and numerical simulation of fluid flows. Based on lectures given at the summer school "Waves in Flows", held in Prague from August 27-31, 2018, chapters are written by renowned experts in their respective fields. Featuring an accessible and flexible presentation, readers will be motivated to broaden their perspectives on the interconnectedness of mathematics and physics. A wide range of topics are presented, working from mathematical modelling to environmental, biomedical, and industrial applications. Specific topics covered include:Equatorial wave-current interactionsWater-wave problemsGravity wave propagationFlow-acoustic interactions Waves in Flows will appeal to graduate students and researchers in both mathematics and physics. Because of the applications presented, it will also be of interest to engineers working on environmental and industrial issues.