Filtrer
Éditeurs
Formats
Prix
-
Linear and Nonlinear System Modeling
Tamal Roy, Suman Lata Tripathi, Souvik Ganguli
- Wiley-Scrivener
- 6 Septembre 2024
- 9781119847519
Written and edited by a team of experts in the field, this exciting new volume presents the cutting-edge techniques, latest trends, and state-of-the-art practical applications in linear and nonlinear system modeling. Mathematical modeling of control systems is, essentially, extracting the essence of practical problems into systematic mathematical language. In system modeling, mathematical expression deals with modeling and its applications. It is characterized that how a modeling competency can be categorized and its activity can contribute to building up these competencies. Mathematical modeling of a practical system is an attractive field of research and an advanced subject with a variety of applications. The main objective of mathematical modeling is to predict the behavior of the system under different operating conditions and to design and implement efficient control strategies to achieve the desired performance. A considerable effort has been directed to the development of models, which must be understandable and easy to analyze. It is a very difficult task to develop mathematical modeling of complicated practical systems considering all its possible high-level non-linearity and cross couple dynamics. Although mathematical modeling of nonlinear systems sounds quite interesting, it is difficult to formulate the general solution to analyze and synthesize nonlinear dynamical systems. Most of the natural processes are nonlinear, having very high computational complexity of several numerical issues. It is impossible to create any general solution or individual procedure to develop exact modeling of a non-linear system, which is often improper and too complex for engineering practices. Therefore, some series of approximation procedures are used, in order to get some necessary knowledge about the nonlinear system dynamics. There are several complicated mathematical approaches for solving these types of problems, such as functional analysis, differential geometry or the theory of nonlinear differential equations.
-
Design and Development of Efficient Energy Systems
Sanjeevikumar Padmanaban, Suman Lata Tripathi, Dushyant Kumar Singh, P. Raja
- Wiley-Scrivener
- 26 Mars 2021
- 9781119761792
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these "game changers," governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
-
Explainable Machine Learning Models and Architectures
Mufti Mahmud, Suman Lata Tripathi
- Wiley-Scrivener
- 29 Août 2023
- 9781394186556
EXPLAINABLE MACHINE LEARNING MODELS AND ARCHITECTURES This cutting-edge new volume covers the hardware architecture implementation, the software implementation approach, and the efficient hardware of machine learning applications. Machine learning and deep learning modules are now an integral part of many smart and automated systems where signal processing is performed at different levels. Signal processing in the form of text, images, or video needs large data computational operations at the desired data rate and accuracy. Large data requires more use of integrated circuit (IC) area with embedded bulk memories that further lead to more IC area. Trade-offs between power consumption, delay and IC area are always a concern of designers and researchers. New hardware architectures and accelerators are needed to explore and experiment with efficient machine-learning models. Many real-time applications like the processing of biomedical data in healthcare, smart transportation, satellite image analysis, and IoT-enabled systems have a lot of scope for improvements in terms of accuracy, speed, computational powers, and overall power consumption. This book deals with the efficient machine and deep learning models that support high-speed processors with reconfigurable architectures like graphic processing units (GPUs) and field programmable gate arrays (FPGAs), or any hybrid system. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.