• This book offers a wide-ranging and up-to-date overview of the basic science underlying PET and
    its preclinical and clinical applications in modern medicine. In addition, it provides the reader with a sound understanding of the scientific principles and use of PET in routine practice and biomedical imaging research. The opening sections address the fundamental physics, radiation safety, CT scanning dosimetry, and dosimetry of PET radiotracers, chemistry and regulation of PET radiopharmaceuticals, with information on labeling strategies, tracer quality control, and regulation of radiopharmaceutical production in Europe and the United States. PET physics and instrumentation are then discussed, covering the basic principles of PET and PET scanning systems, hybrid PET/CT and PET/MR imaging, system calibration, acceptance testing, and quality control. Subsequent sections focus on image reconstruction, processing, and quantitation in PET and hybrid PET and on imaging artifacts and correction techniques, with particular attention to partial volume correction and motion artifacts. The book closes by examining clinical applications of PET and hybrid PET and their physiological and/or molecular basis in conjunction with technical foundations in the disciplines of oncology, cardiology and neurology, PET in pediatric malignancy and its role in radiotherapy treatment planning. Basic Science of PET Imaging will meet the needs of nuclear medicine practitioners, other radiology specialists, and trainees in these fields.

  • This book provides comprehensive and detailed information on the scientific bases of nuclear medicine, addressing a wide variety of topics and explaining the concepts that underlie many of the investigations and procedures performed in the field. The book is divided into six sections that cover the physics and chemistry of nuclear medicine besides associated quality assurance/quality control procedures; dosimetry and radiation biology; SPECT and PET imaging instrumentation plus CT imaging technology in hybrid modalities; data analysis including image processing, reconstruction, radiomics, image degrading correction techniques, along with image quantitation and kinetic modeling. Within these sections, particular attention is paid to recent developments and the advances in knowledge that have taken place since release of the first edition in 2011. Several entirely new chapters have been included and the remaining chapters, thoroughly updated.Innovations in the ever-expanding field of nuclear medicine are predominantly due to integration of the basic sciences with complex technological advances. This excellently illustrated book on the subject will be of interest to not only nuclear medicine physicists and physicians but also clinical scientists, radiologists, radiopharmacists, medical students and technologists.